On the Definition of Restricted Infrapolynomials ${ }^{1}$

Mishael Zedek
Department of Mathematics, University of Maryland, College Park, Maryland 20742
Communicated by J. L. Walsh

1. Let E be a compact point-set in the complex z-plane containing at least $n(\geqslant 1)$ points and let P_{n} be the class of polynomials $z^{n}+\sum_{i=1}^{n} c_{i} z^{n-t}$ with complex coefficients. Fekete and von Neumann [1] introduced infrapolynomials on E as those polynomials in P_{n} which have no underpolynomials in P_{n} on E, namely,

Definition 1. $p(z) \in P_{n}$ is called an infrapolynomial on E, if there is no other polynomial $q(z) \in P_{n}$ which satisfies

$$
\begin{array}{ll}
|q(z)|<|p(z)| & \text { for } z \in E \text { where } p(z) \neq 0 \\
q(z)=p(z)=0 & \text { for } z \in E \text { where } p(z)=0 \tag{2}
\end{array}
$$

Motzkin and Walsh [4] have shown that infrapolynomials on E have no weak underpolynomials on E, and more specifically

Theorem 1. $p(z) \in P_{n}$ is an infrapolynomial on E if and only if there is no other polynomial $q(z) \in P_{n}$ which satisfies

$$
\begin{equation*}
|q(z)| \leqslant|p(z)| \quad \text { for all } z \in E \tag{3}
\end{equation*}
$$

Clearly the above theorem may serve as a more satisfactory definition of infrapolynomials, which can also be phrased as follows:

Definition 1*. $p(z) \in P_{n}$ is called an infrapolynomial on E if for each other polynomial $q(z) \in P_{n}$ there is a point $z_{q} \in E$ such that

$$
\begin{equation*}
\left|q\left(z_{q}\right)\right|>\left|p\left(z_{q}\right)\right| . \tag{4}
\end{equation*}
$$

It is the purpose of this note to show that this simplification can be carried over to some classes of restricted polynomials but not to others since an analogous theorem to Theorem 1 does not generally hold true.
2. Restricted infrapolynomials were introduced by various authors (see Zolotarev [8], Walsh and Zedek [7], Meĭman [3], Shisha and Walsh [5], and

[^0]Walsh [6]). They differ from the infrapolynomials defined above by the fact that both the restricted infrapolynomials and the underpolynomials belong to a subclass $P_{n}\left(A_{n_{1}}, \ldots, A_{n_{q}}\right)$ of P_{n} consisting of all polynomials of the form $z^{n}+\sum_{i=1}^{n} c_{i} z^{n-i}$, with $q(<n)$ prescribed coefficients $c_{n k}=A_{n k}, k=1, \ldots, q$.

Definition 2. $p(z) \in P_{n}\left(A_{n_{1}}, \ldots, A_{n_{q}}\right)$ is called a restricted infrapolynomial on E if there is no other polynomial $q(z) \in P_{n}\left(A_{n_{1}}, \ldots, A_{n_{q}}\right)$ which satisfies

$$
\begin{array}{ll}
|q(z)|<|p(z)| & \text { for } z \in E \text { where } p(z) \neq 0 \\
|q(z)|=|p(z)| & \text { for } z \in E \text { where } p(z)=0 \tag{6}
\end{array}
$$

Restricted infrapolynomials may, in general, have weak underpolynomials on E (i.e., a polynomial $q(z)$ in the same subclass as the restricted infrapolynomial $p(z)$, satisfying $q(z) \neq p(z),|q(z)| \leqslant|p(z)|$ for all $z \in E)$ even though they cannot have underpolynomials on E, by Definition 2 . The following example will illustrate this situation:

Let $E=\{-2,2\}$ and consider for $A_{2}=0$, the subclass $P_{3}\left(A_{2}\right)$, of polynomials of the form $p(z)=z^{3}+a_{1} z^{2}+a_{3}$. We shall see that all the polynomials of the above form whose coefficients satisfy

$$
\begin{equation*}
-8 \leqslant 4 a_{1}+a_{3} \leqslant 8 \tag{7}
\end{equation*}
$$

are restricted infrapolynomials on E. Indeed, let $q(z)=z^{3}+b_{1} z^{2}+b_{3}$. Then

$$
\begin{aligned}
|q(2)|+|q(-2)| \geqslant q(2)-q(-2)=16 & =8-\left|4 a_{1}+a_{3}\right|+8+\left|4 a_{1}+a_{3}\right| \\
& =|p(2)|+|p(-2)|
\end{aligned}
$$

the last equality following from (7). Clearly, $|q(2)|<|p(2)|$ implies $|q(-2)|>|p(-2)|,|q(-2)|<|p(-2)|$ implies $|q(2)|>|p(2)|$, and we cannot have $|q(2)|=|p(2)|=|q(-2)|=|p(-2)|=0$ unless $q(z) \equiv p(z)$. Thus $p(z)$ has no underpolynomials on E. On the other hand, $r(z)=z^{3}+\left(a_{1}-1\right) z^{2}+\left(a_{3}+4\right)$ is a weak underpolynomial to $p(z)$ on E, since $p(-2)=r(-2)$ and $p(2)=r(2)$.
3. The example demonstrates that it is impossible, in general, to replace (5) and (6) in Definition 2 by a single inequality $|q(z)| \leqslant|p(z)|$ for all $z \in E$. Nevertheless, in an important case, this can be done. That is the case, significant for the approximation of polynomials of a high degree by polynomials of a lower degree, of prescribed consecutive leading coefficients.

We adapt Motzkin and Walsh's proof of Theorem 1 above, to prove
Theorem 2. $p(z) \in P_{n}\left(A_{1}, \ldots, A_{s}\right)$ is a restricted infrapolynomial on the compact set E (with respect to the subclass $P_{n}\left(A_{1}, \ldots, A_{s}\right)$ of polynomials of the form $\left.z^{n}+\sum_{i=1}^{s} A_{i} z^{n-i}+\sum_{i=s+1}^{n} a_{i} z^{n-i}\right)$ if and only if there is no other polynomial $r(z) \in P_{n}\left(A_{1}, \ldots, A_{s}\right)$ which satisfies

$$
\begin{equation*}
|r(z)| \leqslant|p(z)| \quad \text { for all } z \in E . \tag{8}
\end{equation*}
$$

Proof. The "if" part of the proposition is trivial. To prove the "only if" part, let us assume that $p(z)$ is a restricted infrapolynomial on E and let us show that if there exists a weak underpolynomial $r(z)$ satisfying (8), then one can construct an underpolynomial $q(z) \in P_{n}\left(A_{1}, \ldots, A_{s}\right)$ satisfying (5) and (6), contradicting our assumption about $p(z)$.

It is clear that $m(z)=[r(z)+p(z)] / 2$ belongs to $P_{n}\left(A_{1}, \ldots, A_{s}\right)$ and satisfies in E either $|m(z)|<|p(z)|$ or $m(z)=p(z)$. The later equality can hold in at most $n-s-1$ points of E (counting multiplicities), since otherwise $m(z) \equiv p(z) \equiv r(z)$. Some of these, say $z_{1}, \ldots, z_{k}, 0 \leqslant k \leqslant n-s-1$, may be common zeros. Assume $p(z)=p_{1}(z) f(z)$ and $m(z)=m_{1}(z) f(z)$ where

$$
f(z)=\prod_{i=1}^{k}\left(z-z_{i}\right)=z^{k}+B_{1} z^{k-1}+\ldots+B_{k}
$$

(this step in the proof should be omitted if $k=0$). We note that the s leading coefficients $u_{1}, u_{2}, \ldots, u_{s}$ in both $p_{1}(z)$ and $m_{1}(z)$ are identical, since they must satisfy the equations

$$
\left.\begin{array}{l}
A_{1}=B_{1}+u_{1} \tag{9}\\
A_{2}=B_{2}+B_{1} u_{1}+u_{2} \\
\cdots \\
A_{s}=B_{s}+B_{s-1} u_{1}+\ldots+B_{1} u_{s-1}+u_{s}
\end{array}\right\}
$$

(where $B_{i}=0$ for $i>k$).
Suppose now that $m(z)=p(z) \neq 0$ on t points of E. Clearly

$$
0 \leqslant t \leqslant n-s-1-k
$$

but the case $t=0$ is trivial, since then, $m(z)$ itself would be an underpolynomial of $p(z)$ on E. Assume, then, that $S=\left\{w_{1}, \ldots, w_{t}\right\}$ is the set of points in E where $m(z)=p(z) \neq 0$, and thus also, where $m_{1}(z)=p_{1}(z) \neq 0$. We have

$$
\begin{equation*}
0<\left|m_{1}(z)\right|<\left|p_{1}(z)\right| \quad \text { for } z \in E-S \tag{10}
\end{equation*}
$$

Let $L(z)$ be the Lagrange polynomial of interpolation of degree $t(\leqslant n-s-1-k)$ satisfying

$$
\begin{equation*}
L(z)=p_{1}(z)=m_{1}(z) \quad \text { for } z \in S \tag{11}
\end{equation*}
$$

Since $0=\left|m_{1}(z)-L(z)\right|<\left|p_{1}(z)\right|$ for $z \in S$, the same inequality would hold for an open neighbourhood U of S. Hence, we have for all $e, 0<e<1$,
$\left|e\left[m_{1}(z)-L(z)\right]+(1-e) m_{1}(z)\right|=\left|m_{1}(z)-e L(z)\right|<\left|p_{1}(z)\right|, \quad$ for $z \in U$.
On the compact set $E-U$ we have $\left|m_{1}(z)\right|<\left|p_{1}(z)\right|$, and if e is sufficiently small,

$$
\begin{equation*}
\left|m_{1}(z)-e L(z)\right|<\left|p_{1}(z)\right| \text { for } z \in E-U . \tag{13}
\end{equation*}
$$

It remains to point out that the polynomial

$$
m_{1}(z)-e L(z)=z^{n-k}+u_{1} z^{n-k-1}+\ldots+u_{s} z^{n-k-s}+\ldots
$$

has the same leading coefficients as $p_{1}(z)$, and due to equations (9), the polynomial $q(z)=\left[m_{1}(z)-e L(z)\right] f(z)$ belongs to $P_{n}\left(A_{1}, \ldots, A_{s}\right)$. Moreover, $|q(z)|<|p(z)|$ everywhere in E except at their common zeros z_{1}, \ldots, z_{k} (if any). This completes the proof of Theorem 2, which permits us to give an alternate definition to restricted infrapolynomials having prescribed consecutive leading coefficients:

Defintion 3. $p(z) \in P_{n}\left(A_{1}, \ldots, A_{s}\right)$ is called a restricted infrapolynomial on E if for each other polynomial $q(z) \in P_{n}\left(A_{1}, \ldots, A_{s}\right)$ there is a point $z_{q} \in E$ such that

$$
\begin{equation*}
\left|q\left(z_{q}\right)\right|>\left|p\left(z_{q}\right)\right| . \tag{14}
\end{equation*}
$$

Generalizations of Theorem 2 in the case of a finite set E have been given by Gordon [2].

References

1. M. Fekete and J. L. von Neumann, Über die Lage der Nullstellen gewisser Minimumpolynome. Jber. Deutsch. Math.-Verein. 31 (1922), 125-138.
2. Y. Gordon, Properties of generalized juxtapolynomials. Israel J. Math. 4 (1966), 177-188.
3. N. N. MEłMAN, Polynomials deviating least from zero with an arbitrary number of given coefficients. Soviet Math. Dokl. 1 (1960), 72-75.
4. T. S. Motzkin and J. L. Walsh, Underpolynomials and infrapolynomials. Illinois J. Math. 1 (1957), 406-426.
5. O. Shisha and J. L. Walsh, The zeros of infrapolynomials with some prescribed coefficients. J. Analyse Math. 9 (1961/62), 111-160.
6. J. L. Walsh, On infrapolynomials with prescribed constant term. J. Math. Pures Appl. 37 (1958), 295-316.
7. J. L. Walsh and M. Zedek, On generalized Tchebycheff polynomials. Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 99-104.
8. E. I. Zolotarev, Applications of elliptic functions to questions of functions differing very greatly or very little from zero. Mem. Acad. Sci., St. Petersburg 30 (suppl.) No. 5, 1877.

[^0]: ${ }^{1}$ This research was supported by the National Science Foundation Grant GP-6891 to the University of Maryland.

